
Advanced Technologies for enhancing routine testing

Quantitative Protein Testing and Ultra Rapid Biological Indicators

Washing and Sterilization

The two main steps in the MD reprocessing cycle

Washing, Disinfection and Inspection

Washing, Disinfection and Inspection

Basic concepts and different ways to measure its efficiency

Not clean

Not sterile

Without efficient cleaning, posterior disinfection and sterilization will be compromised

Monitoring the effectiveness of these 3 steps, helps reducing the risk of an infectious incident

Washing, Disinfection and Inspection

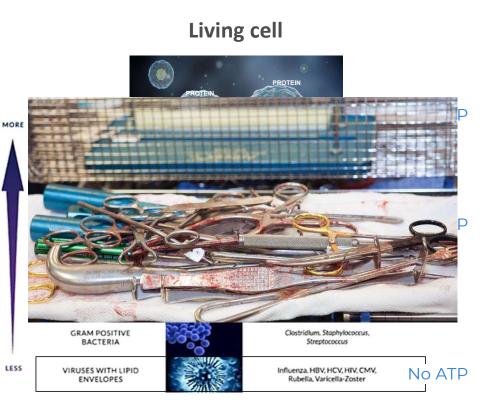
Basic concepts and different ways to measure its efficiency

Washing main purpose:

Total elimination of organic residues

Disinfection main purpose:

Inactivation of living cells, especially microorganisms


Inspection main purpose:

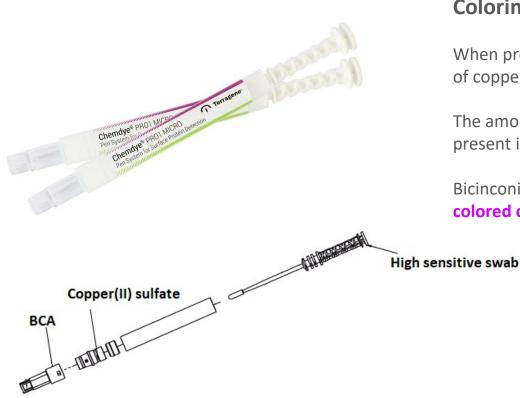
Visual confirmation of absence of organic residues

Quantitative protein test Why is so important to test protein?

- 1. PROTEINS are fundamental components of cells (scaffold proteins) and carry out important biological functions (enzymes).
- 2. Blood and human tissues contain PROTEINS.
- 3. PROTEINS are the most difficult to remove residues during a cleaning process.
- 4. PROTEIN residues represent a direct measure of organic/microbial contamination.
- 5. A dead cell will lose the ATP content, but proteins will remain, i.e., there is still a contamination in the instrument.
- 6. Not all microorganisms contain ATP.
- 7. With protein tests we reduce and monitor the Prion Risk.

Protein Detection Systems

Systems in the market

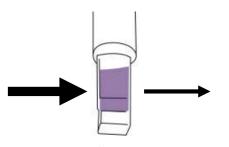


Quantitative systems

 $\mathbf{\Gamma}$

Colorimetric reaction

When proteins are present, peptide protein bonds reduce the **Cu2+** ions of copper(II) sulfate to **Cu+** (copper I).


The amount of **Cu2+** reduced is proportional to the amount of protein present in the solution.

Bicinconinic acid (BCA) reacts with each Cu+ ion, forming a **purple-colored complex** that strongly absorbs light.

Using Bionova[®] Auto-Reader Incubators

Quantification range: 1 - 50 µg

Frequency and Threshold

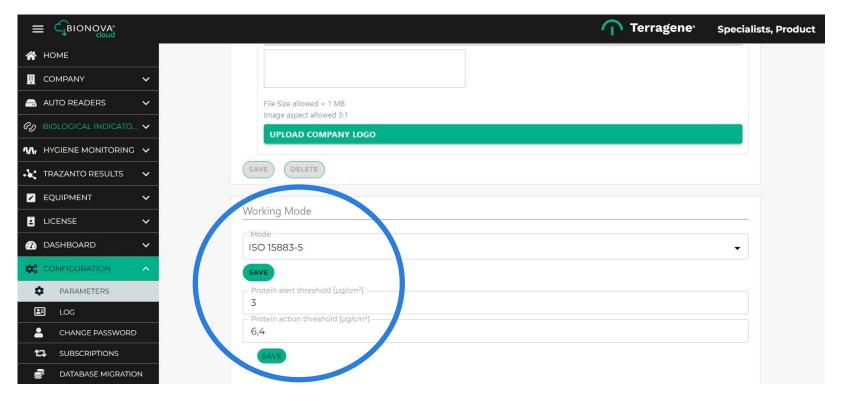
Frequency

Threshold

HTM 01-01 (UK)

50 test Quarterly

5 μg per instrument side


ISO 15883-5:2021

Q₩@edffer a Digital Solution for the two regulatory approaches

Alert level $\ge 3 \ \mu g/cm^2$. Action level $\ge 6,4 \ \mu g/cm^2$

Software Bionova Cloud – ISO 15883-5

 $\mathbf{\Phi}$

Software Bionova Cloud – ISO 15883-5

					Terragene [.]	Specialists, Product
НОМЕ	CODE	INSTRUMENTS	AREA	SWAB BOTH SIDES	CREATION DATE	
	ESPÁTULA	VER ERRORES	21.1 cm ²		11/29/2022 11:41 AM	
OMPANY 🗸	CLAMP ANTO	PINZA	10.3 cm ²		11/29/2022 10:50 AM	
READERS 🗸	SCISSOR ANTO	DESK SCISSOR	19.7 cm ²		11/29/2022 10:40 AM	
GICAL INDICATO 🗸	123123	CONTROL	21.3 cm ²		11/18/2022 9:24 AM	
MONITORING 🗸	INSTRUMENTI	ALIEN TEST	5.8 cm ²		6/23/2022 12:53 PM	
TO RESULTS 🗸	รา	SCISSOR 1	11.8 cm ²		6/15/2022 5:38 AM	
	с	BROCHE	4.4 cm ²		5/20/2022 2:57 PM	
RILIZER	LAPICERA	LAPICERA LIMPIA	7.3 cm ²		5/13/2022 12:27 PM	
IER	PUNTERO	PUNTERO LÁSER	26.6 cm ²		5/11/2022 3:53 PM	
	USB	CABLE USB	25.5 cm ²		5/11/2022 2:01 PM	
TRUMENTS			ROWS PER PAGE 10	(1-10/16) > >	×I	
VSL V						
IBOARD 🗸						
		To genera	ate measurements you r	nust download the Surfac y C App Store	e Eye App	

 $\mathbf{\hat{n}}$

Software Bionova Cloud – ISO 15883-5

Surface Eye video

Software Bionova Cloud – HTM 01-01 (IQAS)

		Terragene [.]	Specialists, Product
🐴 НОМЕ	Company Logo		
🚔 AUTO READERS 🗸 🗸			
Ro BIOLOGICAL INDICA 🗸	File Size allowed < 1 MB Image aspect allowed 3:1		
N, HYGIENE MONITORI 🗸	UPLOAD COMPANY LOGO		
🔪 TRAZANTO RESULTS 🗸	SAVE		
🗄 LICENSE 🗸 🗸	/orking Mode		
	Mode		
	HTM-0101		-
PARAMETERS	SAVE		
	Protein Threshold [µg]		
CHANGE PASSWORD	SAVE		

Software Bionova Cloud – HTM 01-01 (IQAS)

What do you need for implementing the IQAS?

- Bionova[®] Cloud account
- Hygiene Monitoring System Chemdye[®] PRO1MICRO
- Bionova[®] Autoreader: IC1020FR, IC1020FRLCD or MINIPRO

Steps:

1- Baseline development

2- Control Analysis

Software Bionova Cloud – HTM 01-01 (IQAS)

There are two main approaches to instrument sampling:

- If a **single measurement** is to be made at each time point. Baseline: 20 readings

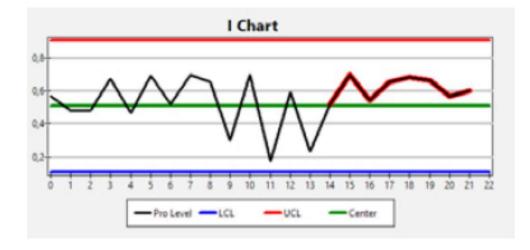
- For measurements that fall naturally into **groups** established by the user (for example, five instruments per week). Baseline: 30 readings

Software Bionova Cloud – HTM 01-01 (IQAS)

If you proceed your IQAS implementation with SINGLE instrument sampling (measurement grouping = 1):

"Graph I": (Individual Graph) log10 protein residues vs. measurement number.

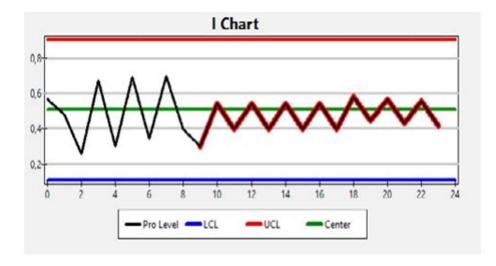
"MR Graph": (Moving Range Graph) Absolute differences between log10 protein residues vs. the number of differences.


If you proceed your IQAS implementation with GROUPS instrument sampling (measurement grouping > 1): "XBAR Graph": Group average vs. group number. "R-Graph": (Range graph) Group range vs. group range number

Software Bionova Cloud – HTM 01-01 (IQAS)

Trends analysis

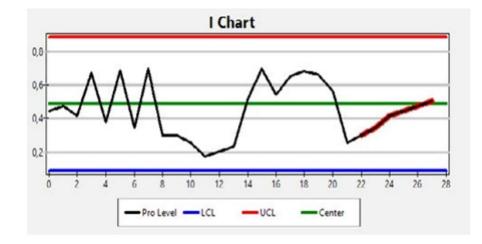
Example 1: Out of control type 1: Instability. In this case, 8 or more consecutive measurements are on the same side of the average.



Software Bionova Cloud – HTM 01-01 (IQAS)

Trends analysis

Example 2: Out of control type 2: Alternating. In this case, there are 14 measurements where there is an alternating pattern.



Software Bionova Cloud – HTM 01-01 (IQAS)

Trends analysis

Example 3: Out of control type 3: **Monotonous**. In this case, 6 consecutive measurements show a monotonous trend (all rising or falling).

Conclusion: The best option to control your cleaning process

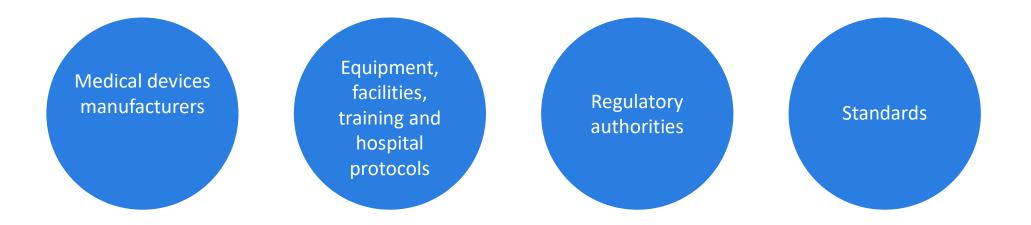
- 1- Identification and quantification of proteins, highly challenging molecules for the washing process
- 2- Swab system that allows testing areas of difficult access
- 3- Quantifiable system with high sensitivity and detection limits according to the highest standards
- 4- Quality Control and Traceability Software for digital storage of results and analysis

Sterilization

 $\widehat{}$

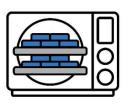
Population growth: overcrowded hospitals, increased need for operating rooms \rightarrow Increased rotation speed of reusable materials

Incorrect use of antibiotics: increases the resistance of pathogenic bacteria; increases the rate of hospital acquired infections.


New threats: diseases caused by Prions; new pathogens.

New medical devices: New technologies in the reprocessing of instruments (washing, disinfection and sterilization) and inappropriate indicators for monitoring these processes.

New challenges \rightarrow New concepts


THEY HAD TO ADAPT QUICKLY TO INNOVATIONS AND THE MODERN MARKET

Routine Challenges

Steam sterilization is one of the most recommended and used sterilization methods and therefore, it is wrongly considered as an easy method.

Instruments have different temperature profiles A good understanding of the instruments and products is needed.

Loading pattern might affect the sterility assurance Each load configuration must be validated.

Accurate measurement of the parameters Temperature probes are located in the drain.

Water quality

_Pure steam.

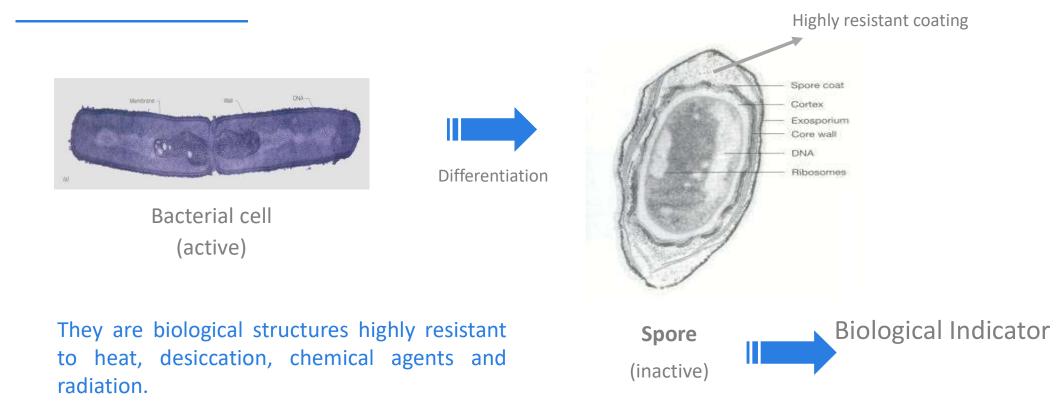
_Non-condensable gases (Temperature and pressure relationship might not be the appropriate in presence of NCG).

Complete and effective quality assurance program

Physical controls Thermometer | Manometer Printer ticket | LCD Display

Chemical controls Chemical indicators

Biological controls Biological indicators

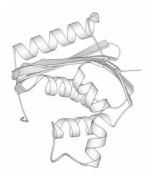


Load release | Biological Indicators BIs basic concepts

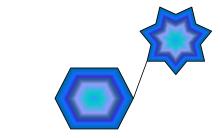
The most reliable sterilization control system THE GOLDEN STANDARD

A system that uses highly resistant microorganisms (spores) in order to control the death of pathogenic and non pathogenic organisms (less resistant)

Load release | Biological Indicators BIs basic concepts



Load release | Biological Indicators Bls evolution


Load release | Biological Indicators How does the fluorescence readout work?

ENZYMATIC REACTION: Prediction of Spore viability

α-glucosidase (*G. stearothermophilus*)

Spore-associated enzymes

Non-fluorescent substrate

Incorporated in the culture medium

Load release | Biological Indicators How does the fluorescence readout work?

ENZYMATIC REACTION: Prediction of Spore viability

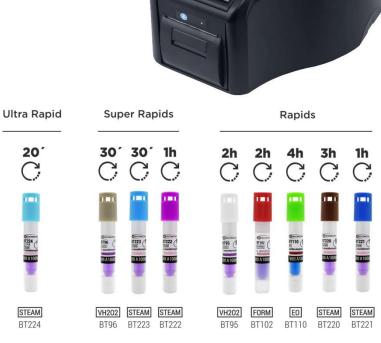
Load release | Biological Indicators **Dedicated Auto-Readers**

Bionova® IC1020FR LCD

20'

C

17224 C


STEAM

BT224

Bionova® MiniBio

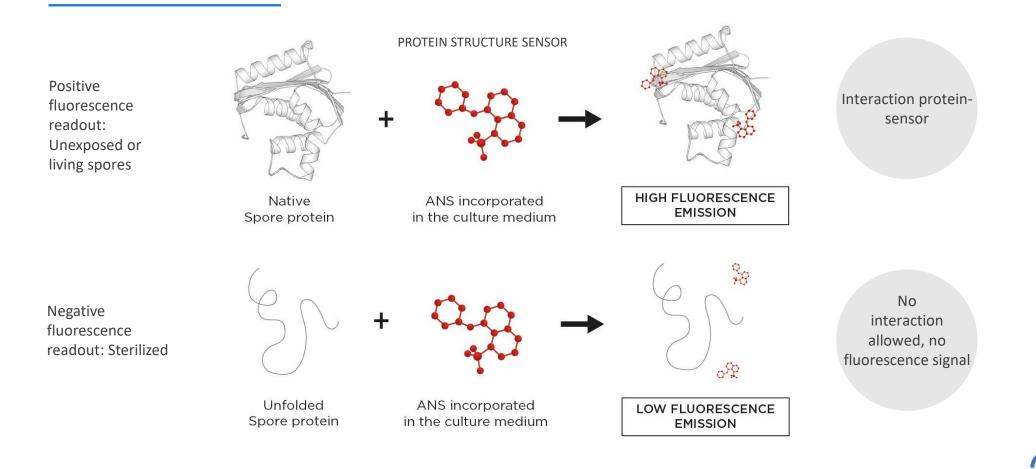
Bionova® IC1020FR

Load release Biological Indicators | BIs evolution

PHOTON


First Instant Ristagical MADIE NATE MARKET

D


PHOTON

 $\widehat{}$

Instant SCBI

Instant SCBI

PHOTON®)

Instant, Microbiological and Safe, your load release has never been more realible

Bionova Cloud Ecosystem

 $\widehat{}$

Thank you

